Transmission and Distribution of Electrical Power

E-mail: mohamedahmed_en@yahoo.com

mohamed.mohamed@feng.bu.edu.eg

Web site: http://bu.edu.eg/staff/mohamedmohamed033

Lecture (1)

Syllabus

- Introduction.
- Fundamentals of Electrical Power Engineering.
- Transmission Line Constants Calculation.
- Transmission Line Models and Calculations.
- Mechanical Design of Overhead Transmission Line.
- D.C. Power Transmission Technology.
- Overhead Line Insulator.
- Corona

3

5

6

8

g

10

- Underground Cables
 - Electrical Power Distribution

Marks Distribution Chart

Engineering Definition

What is Engineering?

Engineering is the application of math and science by which properties of matter and the sources of energy in nature are made useful. **Engineering Design Definition**

What is Design?

So, Engineering design is.....

Applications & Examples

Why Engineering Design?

Betterment of society through

Design

Manufacturing

Research & Development

Management

Continual Improvement

Logistics

Engineering Process Cycle

The engineering process cycle is achieved by following 10 stages.

- 1-Identify the problem/product innovation
- 2-Define the working criteria/goals
- **3-Research and gather data**
- 4-Brainstorm / generate creative ideas
- **5-Analyze potential solutions**

Engineering Process Cycle

- 6-Develop and test models.
- 7-Make the decision.
- 8-Communication and specify.
- 9-Implement and commercialize.
- 10-Perform post-implementation review and assessment.

Electricity

Changes

Lifestyle

TYPES Of Power plants

Hydroelectric Power Plants

*Theory of Operation

Hydroelectric Power Plants

*Advantages of hydroelectric power plant

*Disadvantages of hydroelectric power plant

Steam Power Plants

*Theory of Operation

Steam Power Plants

*Advantages of Steam Power Plants

*Disadvantages of Steam Power Plants

Solar Power Plants

*Theory of operation

Solar Power Plants

*Advantages of Solar Power Plants

*Disadvantages of Solar Power Plants

Piesel Power Plants

*Theory of Operation

Diesel Power Plants

*Advantages of Diesel Power Plants

*Disadvantages of Diesel Power Plants

Gas turbine Power Plants

*Theory of operation

DIAGRAM OF TYPICAL LARGE GAS TURBINE

Gas turbine Power Plants

*Advantages of Gas-turbine Power Plants

*Disadvantages of Gas-turbine Power Plants

Nuclear Power Plants

*Theory of

Operation

Nuclear Power Plants

*Advantages of nuclear power plant

*Disadvantages of nuclear power plant

*Chapter 1:

Transmission Line Constants

*Chapter 2:

Transmission Line Models and Calculations
*
<u>Chapter 3:</u>

Mechanical Design of Overhead T.L

* Chapter 4:

D.C. power Transmission Technology

Chapter 1: Transmission Line Constants

1. Main parts of over head T .L.

Ground

Types of conductors

- * Hard -drawn copper conductors .
- * Aluminum- core steel-rein forced (ACSR).
- * For rural electrification , all aluminum conductors are used.
- * Steel wires are used as earthing wires for over head T. L.

The main constants required are

- * Resistance (R "ohm").
- * Inductance (L "hennery") & corresponding X_L.
- * Capacitance (C " farad ") & corresponding X_c .

Besistance of over head T . L

*
$$R = \rho L/A$$
 Ω

*Where:

- R: resistance of T.L (Ω)
- ρ : resistivity of T.L conductor (Ω .m)
- L: length of T.L (m)
- A: cross -section area (m²)

* For hard -drawn conductors : $\rho = 1.724 \times 10^{-8} \Omega$.m at 20 °C * For all - aluminum conductors : $\rho = 2.860 \times 10^{-8} \Omega$.m at 20 °C

Effect of Temperature on Besistance

* The resistance of T.L increases with Temperature
 * The rise in resistance depends on the Temperature coefficient of conductor material (α).

Skin Effect on Conductors

when alternating current is passing through conductors, there is an unequal distribution of current in any cross - section of the conductor, the current density at the surface being higher than the current density at the center of the conductor . this causes larger power loss for a given r.m.s alternating current than the loss when the same value of DC is flowing in the conductor.

* $R_{ac} > R_{dc}$ $R_{ac} = \frac{Average power losses}{I^2 rms}$ Skin effectratio = $\frac{R_{ac}}{R_{dc}}$

Which depends on

- * Permeability (Type of material).
- * Area of cross section of the conductor.
- * Frequency of the supply.

Inductance & Reactance of Q.H.T.L

Inductance of overhead transmission line depends

on:

*Size of conductor.

*Distance between conductors.

*Material of conductors.

Inductance & Reactance of Q.H.T.L

$$H = \frac{I}{2\pi x}$$

A.turn/m

H : electric field intensity.

 wb/m^2

A.turn/m

$$B = \frac{2*10^{-7}}{r^2} Ix$$

Inductance of Two Conductor (Single Phase)

linkages /m

$$\lambda_{\text{total}} = \lambda_{\text{inside}} + \lambda_{\text{outside}}$$

$$\lambda_{\text{inside}} = \int_{0}^{r} \frac{2*10^{-7} xI}{r^{2}} * \frac{\pi x^{2}}{\pi r^{2}} dx$$

$$\lambda_{\text{inside}} = \int_{0}^{r} \frac{2*10^{-7} x^{3}}{r^{4}} dx = \frac{2*10^{-7} I}{r^{4}} \frac{1}{4} x^{4} |_{0}^{r}$$

$$= \frac{2*10^{-7} I}{4r^{4}} * r^{4} = \frac{1}{2} * 10^{-7} I \text{ linkag}$$

$$\lambda_{outside} = \int_{r}^{D} \frac{2*10^{-7} xI}{r^{2}} * \frac{\pi r^{2}}{\pi x^{2}} dx$$

= $\int_{r}^{D} \frac{2*10^{-7I}}{X} dx = 2*10^{-7} I \ln \frac{D}{r}$
 $\lambda_{outside} = 2*10^{-7} I \ln \frac{D}{r}$ linkages/m
 $\lambda_{total} = \lambda_{inside} + \lambda_{outside}$
= $\frac{1}{2}*10^{-7} I + 2*10^{-7} I \ln \frac{D}{r}$

L₁=
$$\frac{\lambda_1}{I} = 10^{-7} \left(2 \ln \frac{D}{r} + \frac{1}{2}\right)$$
 H/m

In case of non magnetic or hollow conductor

 $L_t = L_1 + L_2 = 2L_1$ (Two identical conductors)

In Case of Magnetic Conductor

$$L = 10^{-7} \left(\ln \frac{D}{r} + \frac{1}{2} \frac{\mu}{\mu_0} \right)$$

 μ : permeability

-7

 μ_r : relative permeability

$$X_t = 2\pi f L_t \quad \Omega$$

$$\lambda = 10^{-7} I (2 \ln \frac{D}{r} + \frac{1}{2}) = 2 * 10^{-7} I (\ln \frac{D}{r} + \frac{1}{4})$$

$$\lambda = 2 * 10^{-7} I \ln \frac{D}{re^{-0.25}}$$

Where:

- r e ^{-.025}: geometric mean radius (GMR) or self - geometric mean distance.
- D : distance bet. Two conductors or mutual distance between two conductors

General Expression for Inductance of a Group of Parallel Wires

$$\begin{split} \lambda_{a} &= 10^{-7} \left(\frac{I_{a}}{2} \frac{\mu}{\mu_{0}} + 2I_{a} \ln \frac{D_{ax}}{r} \right) \\ \lambda_{total} &= 10^{-7} \left(\frac{I_{a}}{2} \frac{\mu}{\mu_{0}} + 2I_{a} \ln \frac{D_{ax}}{r} \right) \\ &+ 2I_{p} \ln \frac{D_{bx}}{D_{ab}} \\ &+ ... + 2In \ln \frac{D_{nx}}{D_{an}} \right) \\ I_{a} + I_{b} + I_{c} + + I_{n} = 0 \\ \end{split}$$

 \mathbf{N}

/ | |

$$\lambda_{a} = 10^{-7} \left[\frac{I_{a}}{2} \frac{\mu}{\mu_{0}} + 2I_{a} \left(\ln \frac{D_{ax}}{r} - \ln \frac{D_{nx}}{D_{an}} \right) \right]$$
$$+ 2I_{b} \left(\ln \frac{D_{bx}}{D_{ab}} - \ln \frac{D_{nx}}{D_{ab}} \right)$$
$$+ \dots + 2I_{n-1} \left(\ln \frac{D_{nx}}{D_{an}} \right)$$
since,
$$\ln A - \ln B = \ln \frac{A}{B}$$

$$\begin{aligned} \lambda_{a} &= 10^{-7} \left[\frac{I_{a}}{2} \frac{\mu}{\mu}_{0} + 2I_{a} \left(\ln \frac{D_{ax}}{r} \cdot \frac{D_{an}}{D_{nx}} \right) \right) \\ &+ 2I_{b} \left(\ln \left(\frac{D_{bx}}{D_{ab}} \cdot \frac{D_{an}}{D_{nx}} \right) \right) \\ &+ \dots + 2I_{n-1} \left(\ln \left(\frac{D_{n-1x}}{D_{an-1}} \cdot \frac{D_{an}}{D_{nx}} \right) \right) \end{aligned}$$

When X approaches infinity,

Since,
$$-\ln A = \ln(A)^{-1} = \ln \frac{1}{A}$$

 $\lambda_a = 10^{-7} \left[\frac{I_a}{2} \frac{\mu}{\mu_0} + 2I_a \ln \frac{1}{r} + 2I_b \ln \frac{1}{D_{ab}} + \dots + 2I_{n-1} \ln \frac{1}{D_{an-1}} + 2\ln D_{an} (I_a + I_b + \dots + I_{n-1}) \right]$

$$\lambda_{a} = 10^{-7} \left[\frac{I_{a}}{2} \frac{\mu}{\mu_{0}} + 2I_{a} \ln \frac{1}{r} + 2I_{b} \ln \frac{1}{D_{ab}} + \dots + 2I_{f} \ln \frac{1}{D_{af}} + 2I_{n} \ln \frac{1}{D_{an}} \right]$$

 $L_a = \frac{\kappa_a}{I_a}$ m/H

 $\mathbf{X}_{\mathrm{La}} = 2\pi f L_a \qquad \Omega$

General Expression for Inductance of Two Parallel Conductors of Irregular Cross-Section

The linkages about the small element I can be obtained by,

$$\begin{split} \lambda_{1} &= 2*10^{-7}*(\frac{1}{n})(\frac{1}{4} + \ln\frac{1}{r_{1}} + \ln\frac{1}{D_{12}} \\ &+ \ln\frac{1}{D_{13}} + \dots \\ &+ \ln\frac{1}{D_{13}} - \ln\frac{1}{D_{1a}} \\ &- \ln\frac{1}{D_{1B}} \dots - \ln\frac{1}{D_{1a}} \\ &- \ln\frac{1}{D_{1B}} \dots - \ln\frac{1}{D_{1n}}) \quad \text{Linkage/m} \\ \text{Similarly, } \lambda_{2}, \lambda_{3}, \dots, \lambda_{n} \text{ can be obtained} \\ \lambda_{total} &= \lambda_{1} + \lambda_{2} + \lambda_{3} + \dots + \lambda_{n} \end{split}$$

The linkages about the conductor are given by () total)

since
$$\ln \frac{1}{D_1} - \ln \frac{1}{D_2} = \ln \frac{1/D_1}{1/D_2} = \ln \frac{D_2}{D_1}$$

 $\frac{1}{n^2} \ln X = \ln \frac{n^2}{\sqrt{X}}$

$$\lambda_{total} = 2*10^{-7} I \left[\frac{1}{4n} + \ln \frac{\sqrt[n^2]{D_{1A}D_{1B}...D_{1n}D_{2A}D_{2B}...D_{2n}}}{\sqrt[n^2]{r_1D_{12}...D_{1n}r_2D_{21}...D_{2n}...P_{n}D_{n1}...}}\right]$$

If n is taken as infinity, the term $\frac{1}{4n}$ is negligible and approaches to zero, thus,

$$\lambda = 2 * 10^{-7} I \ln \frac{\sqrt[n^2]{D_{1A} D_{1B} \dots D_{1n} D_{2A} D_{2B} \dots D_{2n} r_n}{\sqrt[n^2]{r_1 D_{12} \dots D_{1n} r_2 D_{21} \dots \dots D_{2n} r_n}}$$

$$\lambda = 2 * 10^{-7} I \ln \frac{D_m}{D_s} \quad H/m$$

$L = \frac{\lambda}{I}$

Definitions:

- D_m: (Geometric mean distance) "GMD": is the distance between the one conductor in coil side and the other conductors in the other coil side.
- Ds : (self geo metric mean distance) "SGMD" or (Geometric mean radius)"GMR" is the distance between the one conductor in coil side and the other conductors in the same coil side

Inductance of Two Parallel Wires with Single-Phase Circuit

Inductance of Single-Phase Line with Multi-Conductors

using general expression

$$L = 2*10^{-7} \ln \frac{D_m}{D_s}$$
 H/m

For identical conductors, $r_a = r_b = r_x = r_y = r$

$$D_m = \sqrt[2^{*2}]{D_{ax}.D_{ay}.D_{bx}.D_{by}}$$

Where;

$$D_{\rm ay} = \sqrt{(D_{\rm ax})^2 + (D_{\rm xy})^2}$$

$$D_{s} = \sqrt[(2)^{2}]{r_{a}.D_{ab}.r_{b}.D_{ba}} = \sqrt[4]{r_{a}D_{ab}r_{b}D_{ba}}$$
$$r_{a} = r_{b} = r \qquad D_{ab} = D_{ba}$$
$$Note: r_{a} = re^{-0.25} \qquad D_{s} = \sqrt{rD_{ab}}$$

If $D_{ab}=D_{xy}$, then D_s of the conductors on the left-hand side as well as on the right-hand side is equal.

With Our Best Wishes Transmission and Distribution of Electrical Power Course Staff

For Your Attention

Mohamed Ahmed Ebrahím