Transmission and Distribution of Electrical Power

By
Associate Prof. / Mohamed Ahmed E6rahim Mohamed

E-mail: mohamedahmed_en@yahoo.com

mohamed.mohamed@feng.bu.edu.eg
Web site: http://bu.edu.eg/staff/mohamedmohamed033

Lecture (1)

Syllabus

1 - Introduction.
2 - Fundamentals of Electrical Power Engineering.
3 - Transmission Line Constants Calculation.
4 - Transmission Line Models and Calculations.
5 - Mechanical Design of Overhead Transmission Line.

- D.C. Power Transmission Technology.
- Overhead Line Insulator.
- Corona
- Underground Cables

10 - Electrical Power Distribution

Marks Distribution Chart

Engineering Definition

What is Engineering?

Engineering is the application of math and science by which properties of matter and the sources of energy in nature are made useful.

Engineering Design Definition

What is Design?

So, Engineering design is.........

Applications \& Examples

Why Engineering Design?

Betterment of society through

Design

Manufacturing

Research \& Development

Management

Continual Improvement

Engineer Definition

Who is Engineer?

Creative

Iterative

Integrated

Innovation is the key Oven Story!!!!!!!!!!

So, Engineer is.........

Engineering Process Cycle

The engineering process cycle is achieved by following 10 stages.
1-Identify the problem/product innovation
2-Define the working criteria/goals
3-Research and gather data
4-Brainstorm / generate creative ideas
5-Analyze potential solutions

Engineering Process Cycle

6-Develop and test models.
7-Make the decision.
8-Communication and specify.
9-Implement and commercialize.
10-Perform post-implementation review and assessment.

$$
\begin{gathered}
\text { Electricity } \\
\text { Changes } \\
\text { Cifestyce }
\end{gathered}
$$

Six key questions

-

What is the electrical energy?

How do we produce electric energy?

Why do we think the electrical energy is important?

What are the resources of electrical energy?

What about renewable energy resources?

What about the concept of smart grid?

TYPES Of Power plants

Hydroelectric Power Plants

Hydroelectric Power Plants

*Advantages of hydroelectric power plant
*Disadvantages of hydroelectric power plant

Steam Power Plants

*Advantages of Steam Power Plants

*Disadvantages of Steam Power Plants

Solar Power Plants

*Theory of operation

Solar Power Plants

*Advantages of Solar Power Plants

*Disadvantages of Solar Power Plants

Diesel Power Plants

*Theory of Operation

Diesel Power Plants

*Advantages of Diesel Power Plants
*Disadvantages of Diesel Power Plants

Gass turbine Power Plants

> *Theory of operation

DIAGRAM OF TYPICALLARGE GAS TURBBE

Gas turbine Power Plants

*Advantages of
Gas-turbine Power Plants
*Disadvantages of Gas-turbine Power Plants

Nuclear Power Plants

*Theory of Operation

Nuclear Power Plants

*Advantages of nuclear power plant
*Disadvantages of nuclear power plant

Contents

*Chapter 1:
Transmission Line Constants
*Chapter 2:
Transmission Line Models and Calculations

* Chapter 3:

Mechanical Design of Overhead T.L
*Chapter 4:
D.C. power Transmission Technology

Chapter 1: Transmission Line Constants

1. Main parts of over head T.L.

Ground

Types of conductors

* Hard -drawn copper conductors.

Aluminum- core steel-rein forced (ACSR).

* For rural electrification , all - aluminum conductors are used.
* Steel wires are used as earthing wires for over head T. L.

The main constants required are

* Resistance (R "ohm").
* Inductance (L "hennery") \& corresponding X_{L}.
* Capacitance (C" farad ") \& corresponding X_{c}.

Resistance of oxer head

* $\mathrm{R}=\rho \mathrm{L} / \mathrm{A} \quad \Omega$
*Where :
R: resistance of T.L (Ω)

ρ : resistivity of T.L conductor (Ω.m)
L : length of T.L (m)
A: cross -section area (m^{2})
For hard -drawn conductors : $\rho=1.724^{ 1} 10^{-8} \Omega . \mathrm{m}$ at $20^{\circ} \mathrm{C}$
For all-aluminum conductors : $\rho=2.860^{ 1} 10^{-8} \Omega$.m at $20^{\circ} \mathrm{C}$

Effect of Temperature on Ressistance

* The resistance of T.L increases with Temperature
* The rise in resistance depends on the Temperature coefficient of conductor material (a).

$$
\frac{R_{t 2}}{R_{t 1}}=\frac{1 / \alpha_{0}+t_{2}}{1 / \alpha_{0}+t_{1}}
$$

Where :
$\mathrm{R}_{\mathrm{t} 2}$: Resistance of T.L at t_{2}
$\mathrm{R}_{\mathrm{t} 1}$: Resistance of $\mathrm{T} . \mathrm{L}$ at t_{1}
a_{0} : Temperature coefficient at $0^{\circ} \mathrm{C}$

T_{1} : First temperature
$\left({ }^{\circ} \mathrm{C}\right)$
T_{2} : Second temperature

* For hard - drawn copper For aluminum

$$
\begin{align*}
& a_{0}=0.0041^{\circ} / \mathrm{C} \tag{}\\
& \mathrm{a}_{0}=0.0038^{\circ} / \mathrm{C}
\end{align*}
$$

when alternating current is passing through conductors, there is an unequal distribution of current in any cross - section of the conductor, the current density at the surface being higher than the current density at the center of the conductor . this causes larger power loss for a given r.m.s alternating current than the loss when the same value of DC is flowing in the conductor.
${ }^{*} R_{\mathrm{ac}}>\mathrm{R}_{\mathrm{dc}}$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{ac}}=\frac{\text { Average power losses }}{\mathrm{I}^{2}{ }_{\mathrm{rms}}} \\
& \text { Skin effectratio }=\frac{\mathrm{R}_{\mathrm{ac}}}{\mathrm{R}_{d c}}
\end{aligned}
$$

Which depends on

* Permeability (Type of material).
* Area of cross section of the conductor.
* Frequency of the supply.

Inductance \& Reactance of O.H.T.L

Inductance of overhead transmission line depends

 on:*Size of conductor. *Distance between conductors. *Material of conductors.

Inductance \& Reactance of O.H.T.L

$$
\mathrm{H}=\frac{I}{2 \pi x}
$$

A.turn/m

H: electric field intensity.

$$
\begin{array}{rl}
\mathrm{B}=\frac{2 * 10^{-7}}{x} I & \mathrm{wb} / \mathrm{m}^{2} \\
\mathrm{H}=\frac{I x}{2 \pi r^{2}} & \text { A.turn } / \mathrm{m}
\end{array}
$$

$$
B=\frac{2 * 10^{-7}}{r^{2}} I x
$$

$\mathrm{wb} / \mathrm{m}^{2}$

Inductance of Two Conductor (Single Phase)

$\lambda_{\text {total }}=\lambda_{\text {inside }}+\lambda_{\text {outside }}$

$$
\begin{aligned}
& \lambda_{\text {inside }}=\int_{0}^{r} \frac{2 * 10^{-7} x I}{r^{2}} * \frac{\pi x^{2}}{\pi r^{2}} d x \\
& \lambda_{\text {inside }}=\int_{0}^{r} \frac{2 * 10^{-7} x^{3}}{r^{4}} d x=\left.\frac{2 * 10^{-7} I}{r^{4}} \frac{1}{4} x^{4}\right|_{0} ^{r}
\end{aligned}
$$

$$
=\frac{2 * 10^{-7} I}{4 r^{4}} * r^{4}=\frac{1}{2} * 10^{-7} I
$$

Continue

$$
\begin{aligned}
\lambda_{\text {outside }} & =\int_{r}^{D} \frac{2 * 10^{-7} x I}{r^{2}} * \frac{\pi r^{2}}{\pi x^{2}} d x \\
& =\int_{r}^{D} \frac{2 * 10^{-7 I}}{X} d x=2 * 10^{-7} I \ln \frac{D}{r} \\
\lambda_{\text {outside }} & =2 * 10^{-7} I \ln \frac{D}{r} \quad \text { linkages } / \mathrm{m} \\
\lambda_{\text {total }} & =\lambda_{\text {inside }}+\lambda_{\text {outside }} \\
& =\frac{1}{2} * 10^{-7} I+2 * 10^{-7} I \ln \frac{D}{r}
\end{aligned}
$$

Continue

$$
\mathrm{L}_{1}=\quad \frac{\lambda_{1}}{I}=10^{-7}\left(2 \ln \frac{D}{r}+\frac{1}{2}\right) \mathrm{H} / \mathrm{m}
$$

In case of non magnetic or hollow conductor

$$
L_{t}=L_{1}+L_{2}=2 L_{1} \text { (Two identical conductors) }
$$

In Case of Magnetic Conductor

$L=1 \mathrm{O}^{-7}\left(\ln \frac{D}{r}+\frac{1}{2} \frac{\mu}{\mu_{\mathrm{o}}}\right)$
μ : permeability
μ_{r} : relative permeability
$\mathrm{X}_{\mathrm{t}}=2 \pi f L_{t} \quad \Omega$
$\lambda=10^{-7} I\left(2 \ln \frac{D}{r}+\frac{1}{2}\right)=2 * 10^{-7} I\left(\ln \frac{D}{r}+\frac{1}{4}\right)$

Continue

$\lambda=2 * 10^{-7} I \ln \frac{D}{r e^{-0.25}}$
Where:
re ${ }^{-.025}$: geometric mean radius (GMR) or self - geometric mean distance.

D : distance bet. Two conductors or mutual distance between two conductors

General Expression for Inductance of a Group of Parallel Wires

$$
\begin{aligned}
\lambda_{a}=10^{-7}\left(\frac{I_{a}}{2} \frac{\mu}{\mu_{0}}\right. & \left.+2 I_{a} \ln \frac{D_{a x}}{r}\right) \\
\lambda_{\text {total }}=10^{-7}\left(\frac{I_{a}}{2} \frac{\mu}{\mu_{0}}\right. & +2 I_{a} \ln \frac{D_{a x}}{r} \\
& +2 I_{p} \ln \frac{D_{b x}}{D_{a b}} \\
& \left.+. .+2 \ln \ln \frac{D_{n x}}{D_{a n}}\right)
\end{aligned}
$$

$$
I_{n}=-\left(I_{a}+I_{b}+I_{c}+\ldots \ldots . .+I_{n-1}\right)
$$

Continue

$$
\begin{aligned}
& \begin{aligned}
& \begin{aligned}
\mathrm{a}= & 10^{-7}\left[\frac{\mathrm{I}_{\mathrm{a}}}{2} \frac{\mu}{\mu_{0}}\right.
\end{aligned}+2 \mathrm{I}_{\mathrm{a}}\left(\ln \frac{\mathrm{D}_{\mathrm{ax}}}{\mathrm{r}}-\ln \frac{\mathrm{D}_{\mathrm{nx}}}{\mathrm{D}_{\mathrm{an}}}\right) \\
&+ 2 \mathrm{I}_{\mathrm{b}}\left(\ln \frac{\mathrm{D}_{\mathrm{bx}}}{\mathrm{D}_{\mathrm{ab}}}-\ln \frac{\mathrm{D}_{\mathrm{nx}}}{\mathrm{D}_{\mathrm{ab}}}\right) \\
&\left.+\ldots \ldots . .+2 \mathrm{I}_{\mathrm{n}-1}\left(\ln \frac{\mathrm{D}_{\mathrm{nx}}}{\mathrm{D}_{\mathrm{an}}}\right)\right]
\end{aligned} \\
& \operatorname{since}, \ln A-\ln B=\ln \frac{A}{B}
\end{aligned}
$$

Continue

$$
\begin{aligned}
\lambda_{a}=10^{-7}\left[\frac{I_{a}}{2} \frac{\mu}{\mu}\right. & +2 I_{a}\left(\ln \frac{D_{a x}}{r} \cdot \frac{D_{a n}}{D_{n x}}\right) \\
& +2 \operatorname{II}\left(\ln \left(\frac{D_{b x}}{D_{a b}} \cdot \frac{D_{a n}}{D_{n x}}\right)\right) \\
& \left.+\ldots+2 I_{n-1}\left(\ln \left(\frac{D_{n-1 x}}{D_{a n-1}} \cdot \frac{D_{a n}}{D_{n x}}\right)\right)\right]
\end{aligned}
$$

Continue

$$
\lambda_{a}=10^{-7}\left[\frac{I_{a}}{2} \frac{\mu}{\mu_{0}}+2 I_{a}\left(\ln \frac{D_{a x}}{r} \cdot \frac{D_{a n}}{D_{n x}}\right)\right)
$$

$$
\begin{aligned}
& +2 I_{b}\left(\ln \left(\frac{D_{b x}}{D_{a b}} \cdot \frac{D_{a n}}{D_{n x}}\right)\right) \\
& \left.+\ldots+2 I_{n-1}\left(\ln \left(\frac{D_{n-1 x}}{D_{a n-1}} \cdot \frac{D_{a n}}{D_{n x}}\right)\right)\right]
\end{aligned}
$$

Continue

When X approaches infinity,

$$
\begin{aligned}
& \frac{D_{a x}}{D_{n x}}=\frac{D_{b x}}{D_{n x}}=\ldots \ldots . .=\frac{D_{n-1}}{D_{n x}}=1 \\
& \begin{aligned}
\lambda_{a}=10^{-7}\left[\frac{I_{a}}{2} \frac{\mu}{\mu_{0}}\right. & +2 I_{a} \ln \frac{D_{a n}}{r} \\
& +2 I_{b} \ln \frac{D_{a n}}{D_{a b}} \\
& \left.+\ldots+2 I_{n-1} \ln \frac{D_{a n}}{D_{a n-1}}\right]
\end{aligned}
\end{aligned}
$$

Continue

Since, $-\ln A=\ln (A)^{-1}=\ln \frac{1}{A}$
$\lambda_{a}=10^{-7}\left[\frac{I_{a}}{2} \frac{\mu}{\mu_{0}}+2 I_{a} \ln \frac{1}{r}+2 I_{b} \ln \frac{1}{D_{a b}}\right.$
$+\ldots+2 I_{n-1} \ln \frac{1}{D_{a n-1}}$
$\left.+2 \ln D_{a n}\left(I_{a}+I_{b}+\ldots+I_{n-1}\right)\right]$

Continue

$$
\begin{align*}
& \begin{array}{l}
\begin{array}{l}
\lambda_{a}=10^{-7}\left[\frac{I_{a}}{2} \frac{\mu}{\mu_{0}}+2 I_{a} \ln \frac{1}{r}+2 I_{b} \ln \frac{1}{D_{a b}}\right. \\
\\
\left.\quad+\ldots+2 I_{f} \ln \frac{1}{D_{a f}}+2 I_{n} \ln \frac{1}{D_{a n}}\right] \\
L_{a}=\frac{\lambda_{a}}{I_{a}} \quad \mathrm{~m} / \mathrm{H}
\end{array} \\
\mathrm{X}_{\mathrm{La}}=2 \pi f L_{a} \quad \Omega
\end{array}
\end{align*}
$$

General Expression for Inductance of Two Parallel Conductors of Irregular Cross-Section

Continue

The linkages about the small element I can be obtained by,

$$
\begin{aligned}
\lambda_{1}=2 * 1 \mathrm{O}^{-7} *\left(\frac{I}{\mathrm{n}}\right)\left(\frac{1}{4}\right. & +\ln \frac{1}{\mathrm{r}_{1}}+\ln \frac{1}{\mathrm{D}_{12}} \\
& +\ln \frac{1}{\mathrm{D}_{13}}+\ldots \\
& +\ln \frac{1}{\mathrm{D}_{1 \mathrm{n}}}-\ln \frac{1}{\mathrm{D}_{1 \mathrm{a}}} \\
& \left.-\ln \frac{1}{\mathrm{D}_{1 \mathrm{~B}}} \ldots-\ln \frac{1}{\mathrm{D}_{1 \mathrm{n}}}\right) \quad \text { Linkage } / m
\end{aligned}
$$

Similarly, $\lambda_{2}, \lambda_{3}, \ldots ., \lambda_{n}$ can be obtained
$\lambda_{\text {total }}=\lambda_{1}+\lambda_{2}+\lambda_{3}+\ldots \ldots+\lambda_{n}$

he linkages about the conductor are gixen by

 ($\lambda_{\text {total }}$)$$
\begin{aligned}
\lambda_{\text {total }}=\frac{2 * 10^{-7}}{n^{2}} & I\left[\frac{1}{4}+\ln \frac{1}{r_{1}}+\ln \frac{1}{D_{12}}+\ldots+\ln \frac{1}{D_{1 n}}\right. \\
& +\frac{1}{4}+\ln \frac{1}{r_{2}}+\ln \frac{1}{D_{21}}+\ldots+\ln \frac{1}{D_{2 n}} \\
& +\frac{1}{4}+\ln \frac{1}{r_{n}}+\ln \frac{1}{D_{n 1}}+\ldots+\ln \frac{1}{D_{n n}} \\
& -\ln \frac{1}{D_{1 A}}-\ln \frac{1}{D_{1 B}}-\ldots-\ln \frac{1}{D_{1 n}} \\
& \left.-\ln \frac{1}{D_{2 A}}-\ln \frac{1}{D_{2 B}}-\ldots . . \ln \frac{1}{D_{2 n}}\right]
\end{aligned}
$$

Continue

$$
\begin{aligned}
& \text { since } \ln \frac{1}{\mathrm{D}_{1}}-\ln \frac{1}{\mathrm{D}_{2}}=\ln \frac{1 / \mathrm{D}_{1}}{1 / \mathrm{D}_{2}}=\ln \frac{\mathrm{D}_{2}}{\mathrm{D}_{1}} \\
& \frac{1}{n^{2}} \ln X=\ln \sqrt[n^{2}]{X}
\end{aligned}
$$

Continue

If n is taken as infinity, the term $\frac{1}{4 n}$ is negligible and approaches to zero, thus,

$$
\begin{aligned}
& \lambda=2 * 10^{-7} I \ln \frac{\sqrt[n^{2}]{D_{1 A} D_{1 B} \ldots \ldots . D_{1 n} D_{2 A} D_{2 B} \ldots D_{2 n} \ldots .}}{\sqrt[n^{2}]{r_{1} D_{12} \ldots . D_{1 n} r_{2} D_{21} \ldots \ldots \ldots \ldots D_{2 n} r_{n}}} \\
& \lambda=2 * 10^{-7} I \ln \frac{D_{m}}{D_{s}} \quad H / m
\end{aligned}
$$

$L=\frac{\lambda}{I}$

Definitions:

D_{m} : (Geometric mean distance) "GMD": is the distance between the one conductor in coil side and the other conductors in the other coil side.

Ds : (self - geo metric mean distance) "SGMD" or (Geometric mean radius)"GMR" is the distance between the one conductor in coil side and the other conductors in the same coil side

Inductance of Two Parallel Wires with Single-Phase Circuit

$D_{m}=D$
$D_{s}=r e^{-0.25}$
$L=L_{a}+L_{b}$

Using general expression

H/m
(For both conductors)

Inductance of Single-Phase Line with Multi-Conductors

using general expression
$L=2 * 10^{-7} \ln \frac{D_{m}}{D_{s}} \quad \mathrm{H} / \mathrm{m}$
For identical conductors, $\quad r_{a}=r_{b}=r_{x}=r_{y}=r$
$D_{m}=\sqrt[22^{2},]{D_{a x} \cdot D_{a y} \cdot D_{b x} \cdot D_{b y}}$
Where;
$D_{\text {ay }}=\sqrt{\left(D_{\text {ax }}\right)^{2}+\left(D_{\mathrm{xy}}\right)^{2}}$

Continue

$$
\begin{array}{ll}
D_{s}=\sqrt[(2)]{2} \sqrt{r_{a} \cdot D_{a b} \cdot r_{b} \cdot D_{b a}}=\sqrt[4]{r_{a} D_{a b} r_{b} D_{b a}} \\
r_{a}=r_{b}=r & D_{a b}=D_{b a} \\
\text { Note }: r_{a}=r e^{-0.25} & D_{s}=\sqrt{r D_{a b}}
\end{array}
$$

If $D_{a b}=D_{x y}$, then D_{s} of the conductors on the left-hand side as well as on the right-hand side is equal.

With Our Best Wishes

Transmission and Distribution of Electrical Power Course Staff

